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DS5 : Molécules, ondes et cinématique – corrigé

— Durée : 4h.
— La calculatrice est autorisée.
— Chaque réponse doit être justifiée.
— Même lorsque ça n’est pas précisé, toute application numérique doit être précédée d’une expression littérale en

fonction des données de l’énoncé.

Exercice 1 : Solubilité de différentes espèces

1. Les différentes interactions de Van der Waals sont :
— interactions de Keesom : interactions dipôle permanent – dipôle permanent entre molécules polaires ;
— interactions de Debye : interactions dipôle permanent – dipôle induit entre molécules polaires et polari-

sables ;
— interactions de London : interactions dipôle instantané – dipôle induit entre molécules polarisables.

L’énergie de liaison des liaisons de Van der Waals est comprise entre 1 et 10 kJ mol−1 .
2. Une liaison hydrogène est une liaison formée entre un atome d’hydrogène lié à un atome très électronégatif (N,

O ou F) et le doublet non liant d’un autre atome. L’énergie de liaison associée est de l’ordre de 20 kJ mol−1 .
3. L’eau est un solvant polaire et protique. Aucun des gaz proposés n’est polaire ou protique. Les seuls interactions

de Van der Waals qui pourront participer à la solubilité des gaz dans l’eau sont donc liées à la polarisabilité du
gaz (liaisons de Debye et London). Plus les molécules de gaz sont grosses, plus elles sont polarisables et plus ces
interactions sont fortes. On s’attend donc à ce que les molécules plus grosses soient plus solubles , et c’est bien
ce que l’on observe.

4. (a) On commence par déterminer les configurations électroniques des éléments pour déterminer leur nombre
d’électrons de valence : [6C] = 1s2 2s22p2︸ ︷︷ ︸

4 e.v.

; [8O] = 1s2 2s22p4︸ ︷︷ ︸
6 e.v.

;[16S] = 1s22s22p6 3s23p4︸ ︷︷ ︸
6 e.v.

.

Puis on propose les représentations de Lewis suivantes :

— Pour CO2 : 4 + 2× 6 = 16 e.v. soit 8 doublets : O C O

— Pour SO2 : 6 + 2× 6 = 18 e.v. soit 9 doublets : O S O
(b) Les molécules adoptent une géométrie qui minimise l’énergie d’interaction entre les paires d’électrons. L’éner-

gie d’interaction est minimale lorsque les paires sont le plus éloignées possibles. Dans la molécule de SO2,
le doublet non liant présent sur le soufre repousse les électrons de liaison, ce qui à tendance à couder la
molécule.

(c) La molécule de CO2 étant linéaire, les moments dipolaires des liaisons s’annulent et son moment dipolaire
total est nul.
Pour la molécule de SO2, on commence par calculer le moment dipolaire d’une liaison S − O, on a µSO =
`SO × δ = `SO × ISO × e. Enfin on fait la somme vectorielle des deux moments dipolaires de liaisons et on
trouve que le moment dipolaire total est µ = 2µSO cos(α/2) = 5,44× 10−30 C m

(d) La molécule de SO2 est polaire tout comme la molécule d’eau. Elle est donc beaucoup plus soluble dans
l’eau que la molécule de CO2 qui est apolaire.

5. L’urée est un composé organique de formule (NH3)2CO. L’urée est soluble dans l’eau à hauteur de 119 g d’urée
pour 100 g d’eau à 25 ◦C.
(a) On détermine la configuration électronique de l’azote pour trouver ses électrons de valence (on a déjà

déterminé les électrons de valence de C et O, et H n’en a qu’un) : [7N] = 1s2 2s22p3︸ ︷︷ ︸
5 e.v.

. La molécule d’urée

possède donc 2× (5 + 2) + 4 + 6 = 24 électrons de valence, soit 12 doublets. On place le carbone au centre
de la structure et on propose la représentation de Lewis suivante :
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(b) Dans la molécule d’urée, les liaisons sont polarisées. Vu la géométrie de la molécule, il est très probable que
la molécule soit globalement polaire. Mais la bonne solubilité de l’urée dans l’eau s’explique sûrement ma-
joritairement par la présence de liaisons NH qui permettent à la molécule de former des liaisons hydrogène
avec les molécules d’eau.

Exercice 2 : Cuve à ondes

I – Lame vibrante

1. La longueur d’onde est λ = c
f = 3,6mm

2. Le nombre d’onde est k = 2π
λ = 1,75× 103 rad m−1

3. L’onde se propage suivant les x croissants, donc on a z(x, t) = z(0, t−x/c) = a cos(2πf(t− x/c)) soit finalement
z(x, t) = a cos(2πft− kx)

4. Les oscillations aux points S et N sont en phase et les oscillations en M sont en retard de 3/4 de période. On a
les représentations suivantes :
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II – Interférences

5. Pour que les interférences entre les deux ondes soient destructives, il faut que le déphasage entre les deux soit
de la forme ∆ϕ =

(
n+ 1

2

)
2π. Comme ∆ϕ = 2π

λ (d2 − d1), on a la condition d’interférences destructives :
d2 − d1 =

(
n+ 1

2

)
λ

6. (a) Sur la partie x < −a
2 de l’axe Ox, on a d2 − d1 = a. On en conclut donc qu’il existe un entier n tel que

a =
(
n+ 1

2

)
λ.

(b) Sur le segment [S1S2], d2−d1 varie de −a à a. On remarque sur la figure qu’il y a entre S1 et S2 8 positions
qui donnent des interférences destructives.
— En S1, on a d2 − d1 = a = (n1 +

1
2 )λ ;

— En S2, on a d2 − d1 = −a = −
(
n1 +

1
2

)
λ =

(
−n1 − 1 + 1

2

)
λ.

Comme entre −n1 − 1 et n1 exclus il y a exactement 2n1 nombres entiers, on en conclut que 2n1 = 8 et
donc n1 = 4. Donc finalement a = 9

2λ ou a
λ = 9

2
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Exercice 3 : Détection d’étoiles doubles par interférométrie

1. On a k = ω
c et λ = c

f . La fréquence des ondes lumineuses est f = 5,0× 1014 Hz

2. On utilise directement la formule de Fresnel avec A1 = A2 = A et on trouve S =
√
2A
√
1 + cos(∆ϕ) .

3. L’intensité lumineuse reçue en M est I(M) = 2β〈S2 cos2(ωt)〉 = βS2 (car 〈cos2(ωt)〉 = 1
2 ) On a donc finalement

I(M) = 2βA2︸︷︷︸
I0

(1 + cos(∆ϕ)) = 2I0(1 + cos(∆ϕ)) (1)

4. Le déphasage est ∆ϕ = 2π δ(M)
λ . Comme les ondes lumineuses se propagent dans l’air, δ(M) correspond à la

différence de distance parcourue par les deux ondes par rapport à un point où elles sont en phase donc on a
finalement δ(M) = S2M − (HS1 + S1M) = r2 − r1 −HS1

5. On a r1 =

√
D2 + y2 +

(
x− a

2

)2
= D

√
1 +

y2+
(
x− a

2

)2
D2 soit r1 ≈ D

(
1 +

y2+
(
x− a

2

)2
2D2

)
car y2+

(
x− a

2

)2
D2 � 1. De la

même manière, on a r2 ≈ D
(
1 +

y2+
(
x+ a

2

)2
2D2

)
6. On exprime la différence de marche δ en fonction de x. Comme ε � 1, on a HS1 ≈ aε. On a alors

δ = D

(
1 +

y2 +
(
x+ a

2

)2
2D2

)
−D

(
1 +

y2 +
(
x− a

2

)2
2D2

)
− aε (2)

=
ax

D
− aε = a

( x

D
− ε
)

(3)

Avec l’expression de l’intensité trouvée à la question 3, et celle de δ(M) on trouve l’expression demandée

I(M) = 2I0

(
1 + cos

(
2πa

λ

( x

D
− ε
)))

(4)

7. Un déphasage nul entre les deux ondes, correspond à une différence de marche nulle et donc x0 = εD

8. Les annulations de l’intensité autour de x0 interviennent pour ∆ϕ = ±π, soit

2πa

λ

( x

D
− ε
)
= ±π ⇔ x± = D

(
ε± λ

2a

)
(5)

L’interfrange est

i = x+ − x− =
Dλ

a
(6)

9. Représentation de I(x) :

x− 0Dε x+
0

2I0

4I0

x

I 1
(x
)
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10. Pour déterminer l’intensité I2(x), il faut changer ε en −ε et on obtient

I2(x) = 2I0

(
1 + cos

(
2πa

λ

( x

D
+ ε
)))

(7)

11. L’intensité totale est I(x) = I1(x) + I2(x). On a alors

I(x) = 2I0

[
2 + cos

(
2πa

λ

( x

D
+ ε
))

+ cos
(
2πa

λ

( x

D
− ε
))]

(8)

On utilise la formule cos(a) + cos(b) = 2 cos
(
x+y
2

)
cos
(
x−y
2

)
, on obtient :

I(x) = 4I0 + 4I0 cos
(
2πax

λD

)
cos
(
2πa

λ
ε

)
(9)

12. — La valeur max de I(x) est atteinte lorsque cos
(
2πax
λD

)
= 1 et vaut Imax = 4I0 + 4I0 cos

(
2πa
λ ε
)

;

— La valeur min de I(x) est atteinte lorsque cos
(
2πax
λD

)
= −1 et vaut Imin = 4I0 − 4I0 cos

(
2πa
λ ε
)

;

— Le contraste s’exprime donc comme C = cos
(
2πa
λ ε
)
. Si cos

(
2πa
λ ε
)
< 0, alors il faut échanger Imax et Imin

et le contraste devient C = − cos
(
2πa
λ ε
)
. Donc finalement, le contraste est C =

∣∣cos
(
2πa
λ ε
)∣∣

13. Le contraste s’annule lorsque 2πa
λ ε = π

2 +kπ avec k ∈ Z, soit ak =
(
k + 1

2

)
λ
2ε . Le contraste s’annule lorsque les

figures d’interférences dues aux deux étoiles sont « en opposition de phase », c’est-à-dire lorsque un maximum
d’intensité de la figure d’interférence due à l’étoile E1 est superposé à un minimum d’intensité de la figure
d’interférence de l’étoile E2 .

14. La plus petite distance pour que les franges disparaissent est amin = a0 = λ
4ε . On en déduit que la distance angu-

laire entre les deux composantes de l’étoile double est 2ε = λ
2amin

= 4,23× 10−6 rad . Cette distance angulaire
est beaucoup plus petite que le pouvoir de résolution de l’œil qui est de l’ordre de 3× 10−4 rad. On ne peut donc
pas distinguer les deux composantes de l’étoile double à l’œil nu à travers la lunette.

Exercice 4 : La cycloïde

I. Equations paramétriques cartésiennes du mouvement.

1. Comme la roue roule sans glisser sur le sol, la distance parcourue est égale à la longueur de l’arc de cercle
compris entre M(t) et H(t), soit OH = Rθ(t) .

2. En projetant le vecteur
−−→
AM sur les axes Ox et Oz on obtient

−−→
AM = −R sin(θ) #»ux −R cos(θ) #»u z .

3. On décompose le vecteur
−−→
OM en

−−→
OM =

−−→
OH +

−−→
HA +

−−→
AM . Or on a déjà vu que

−−→
OH = Rθ(t) #»ux, on voit

clairement sur le schéma que
−−→
HA = R #»u z et on a trouvé

−−→
AM à la question précédente. En additionnant les

trois on obtient :
−−→
OM(t) = [Rθ(t)−R sin(θ)] #»ux + [R−R cos(θ)] #»u z

Ce qui correspond bien aux équations demandées.

II. Vecteur vitesse.
4. La vitesse du point A est la même que celle du point H et est constante. On a d

−−→
OA
dt = d

−−→
OH
dt = v0

#»ux. Or
d’après la question 1, d

−−→
OH
dt = Rθ̇ #»ux. La vitesse de rotation θ̇ est donc constante est vaut θ̇ = v0

R .
5. Comme la distance AM est fixe égale à R, le mouvement est circulaire. En outre on vient de montrer que

la vitesse de rotation est constante. Le mouvement est donc également uniforme.
6. Les composantes du vecteur vitesse s’obtiennent par dérivation de celles du vecteur position, on obtient :{

vx(t) = Rθ̇(t) [1− cos θ(t)]
vz(t) = Rθ̇(t) sin θ(t)
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7. Schéma :

x
O

z

#»v

#»a

#»v

#»a

#»v

#»a

#»v =
#»
0

#»a

8. La norme v de #»v est : v =
√
v2x + v2y = Rθ̇

√
sin2 θ + (1− cos θ)2 soit v = v0

√
2− 2 cos θ

9. On a 1− cos θ = 1− cos 2 θ
2 = 1− (cos2 θ

2 − sin2 θ
2 ) = 1− cos2 θ

2 + sin2 θ
2 = 2 sin2 θ

2

L’expression précédente se simplifie alors en v = 2v0
∣∣sin θ

2

∣∣

t

v

T
2 T = 4πR

v0
3T
2

2T

v0

2v0

III. Vecteur accélération.
10. On obtient les composantes du vecteur accélération en dérivant celles du vecteur vitesse, on obtient :{

ax = Rθ̇2 sin θ

az = Rθ̇2 cos θ

11. Voir schéma précédent.
12. La norme de v augmente pour θ ∈ [0, π] et elle diminue pour θ ∈ [π, 2π]

13. Le point correspondant à θ4 = 2π est un point de rebroussement, la vitesse de M est nulle alors que
l’accélération ne l’est pas.

14. La norme a du vecteur accélération vaut a = Rθ̇2 =
v2
0

R et est donc constante. Pour le pneu en question

elle vaut : a ' 3,7× 103 m s−2 .

15. On peut exprimer le vecteur #»a comme #»a = −θ̇2
−−→
AM = θ̇2

−−→
MA . Le vecteur #»a est donc effectivement tou-

jours dirigé de M vers A.
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