
MPSI– Physique-chimie DS5 : Molécules, ondes et cinématique – 21/01/2026

DS5 : Molécules, ondes et cinématique

— Durée : 4h.
— La calculatrice est autorisée.
— Chaque réponse doit être justifiée.
— Même lorsque ça n’est pas précisé, toute application numérique doit être précédée d’une expression littérale en

fonction des données de l’énoncé.

Exercice 1 : Solubilité de différentes espèces

On indique ci-dessous les valeurs de la solubilité s de plusieurs gaz dans l’eau à 20 ◦C, exprimée en mol `−1, sous
pression atmosphérique.

Gaz H2 CH4 C2H6

s 8,0× 10−4 1,5× 10−3 2,0× 10−3

1. Nommer et décrire succinctement les différentes interactions de Van der Waals. Donner un ordre de grandeur de
l’énergie de liaison associée.

2. Définir une liaison hydrogène et donner un exemple d’espèce établissant une telle liaison. Donner un ordre de
grandeur de l’énergie de liaison associée.

3. Interpréter l’évolution de solubilité constatée en lien avec les forces intermoléculaires.
4. On indique ci-dessous la solubilité s de deux gaz triatomiques dans l’eau, exprimée en mol `−1, sous pression

atmosphérique.

Gaz CO2 SO2

s 3,8× 10−2 1,77

(a) Déterminer les structures de Lewis les plus probables de ces deux molécules.
(b) Le dioxyde de carbone est une molécule linéaire alors que le dioxyde de soufre est coudé (les deux liaisons

forment un angle α = 119◦) . Expliquer qualitativement cette différence.
(c) On donne la longueur de liaison et le pourcentage d’ionicité des liaisons CO et SO :

`CO = 116,3pm et ICO = 18,0%
`SO = 143,1pm et ISO = 23,4%

Le pourcentage d’ionicité IAB d’une liaison A−B est défini comme I = δ
e où δ est la valeur absolue de la

charge partielle portée par les atomes liés et e = 1,6× 10−19 C est la charge d’une électron.
Déterminer le moment dipolaire des deux molécules.

(d) Interpréter la différence de solubilité observée.

5. L’urée est un composé organique de formule (NH2)2CO. L’urée est soluble dans l’eau à hauteur de 119 g d’urée
pour 100 g d’eau à 25 ◦C.
(a) Déterminer la formule de Lewis la plus probable de l’urée (l’atome de C est central).
(b) Expliquer la bonne solubilité de l’urée dans l’eau.

Données :
On donne les numéros atomiques suivants : Z(H) = 1, Z(C) = 6, Z(N) = 7, Z(O) = 8 et Z(S) = 16.
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Exercice 2 : Cuve à ondes

On considère une cuve à ondes, constituée d’une nappe d’eau dont la surface au repos est dans le plan horizontal
Oxy.

I – Lame vibrante

Une lame d’axe Oy, vibrant verticalement à la fréquence f = 100Hz, produit à la surface de cette nappe d’eau
une onde plane progressive harmonique transversale, d’amplitude a = 1,0mm. L’onde se propage selon l’axe Ox à la
célérité constante c = 36 cm s−1. Le milieu est supposé non dispersif et non absorbant. Les variations en fonction du
temps t de la hauteur d’eau au point S d’abscisse xS = 0 sont supposées sinusoïdales :

z(0, t) = a cos(2πft)

On étudie la propagation de l’onde plane selon Ox, où l’on repère la position en un point P quelconque de la
surface de l’eau par son abscisse x. On pose #»e x un vecteur unitaire de l’axe Ox.

1. Exprimer la longueur d’onde λ et la calculer numériquement.
2. Exprimer littéralement le nombre d’onde k à partir des données de l’énoncé.
3. Écrire, en la justifiant, l’expression de z(x, t) du point P à l’abscisse x en fonction du temps t.
4. Représenter graphiquement, sur un même graphe, les mouvements de S,M et N , d’abscisses respectives xS = 0,

xM = 3λ
4 et xN = 5λ en fonction du temps, sur au moins 2 périodes.

II – Interférences

La lame vibrante est maintenant remplacée par deux pointes situées en S1 et S2, distantes de a = S1S2. Celles-ci
frappent simultanément la nappe d’eau, à intervalles réguliers. Ces deux pointes génèrent des ondes qui interfèrent,
comme le montre la Fig. (8) (gauche) ci-dessous où la cuve à ondes est vue de dessus, éclairée par un stroboscope. La
figure est claire là où la surface de l’eau est convexe et foncée là où elle est concave. L’amplitude d’oscillation est plus
faible là où la figure est moins contrastée.

S2S1

Figure 1 – Ondes circulaires de surface générées par deux sources ponctuelles synchrones (à gauche), et les lignes
de vibration minimale qui leur sont associées (à droite).

On modélise ces ondes par des ondes sinusoïdales sphériques (ou circulaires) émises par des sources ponctuelles, situées
aux points S1 et S2 où les pointes frappent la surface de l’eau.

5. En notant λ la longueur d’onde, donner la condition pour que l’interférence en un point M situé aux distances
d1 et d2 respectivement de S1 et de S2, soit destructive.

6. Le lieu des points vérifiant cette condition est un ensemble de courbes que l’on appelle « ligne de vibration
minimale ». Ce sont des hyperboles. Elles sont représentées sur la figure 1 (droite).
(a) Les parties x < −a

2 et x > a
2 de l’axe Ox sont des lignes de vibration minimale. En déduire un renseignement

sur a/λ.
(b) Sur le segment [S1S2], quel est l’intervalle de variation de d2 − d1 ? Déduire de la figure la valeur de a/λ.
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Exercice 3 : Détection d’étoiles doubles par interférométrie

On utilise une lunette astronomique que l’on pointe vers
un couple de deux étoiles très voisines E1 et E2, supposées
ponctuelles et à l’infini. Elles émettent chacune une même
lumière monochromatique de longueur d’onde λ = 600 nm,
et dont la célérité sera assimilée à celle du vide : c = 3,0×
108 m s−1. On dispose la lunette de sorte que E1 et E2 soient
symétriques par rapport à son axe optique. En sortie de la
lunette, les faisceaux de rayons parallèles issus de E1 et E2

forment des angles respectifs +ε > 0 et −ε < 0 avec l’axe
optique. Les étoiles étant voisines, on a ε � 1.

za

écran

x

D

S1

S2

H Mr1

r2

ε

Derrière l’oculaire de la lunette et dans un plan perpendiculaire à l’axe optique, on place une feuille opaque percée
de deux trous d’Young S1 et S2 séparés d’une distance a. En raison de la diffraction, chaque trou se comporte comme
une nouvelle source lumineuse ponctuelle. On regarde l’éclairement au niveau d’un point M d’un écran orthogonal à
l’axe optique, placé à une distance D � a de la feuille.

Pour commencer, on suppose que la feuille est éclairée uniquement par l’étoile E1 (cas représenté sur le schéma).
On admettra que les signaux lumineux aux points S2 et H sont en phase, et que les amplitudes des deux ondes qui
interfèrent en M sont égales.

1. Rappeler la relation reliant k, ω et c puis celle reliant λ, c et f . Calculer la valeur numérique de la fréquence des
ondes lumineuses.

La formule de Fresnel donnant l’amplitude S résultant de la superposition de deux ondes d’amplitudes A1 et A2

déphasées de ∆ϕ est S =
√
A2

1 +A2
2 + 2A1A2 cos(∆ϕ)

2. Donner, en fonction de A (amplitude commune des deux ondes qui interfèrent en M) et ∆ϕ (déphasage entre
les deux ondes qui interfèrent en M) l’amplitude de l’onde au point M .

L’intensité lumineuse I(M) est proportionnelle à la moyenne temporelle de s2(M, t), ce que l’on note I(M) =
2β〈s2(M, t)〉, où β est un coefficient constant.

3. Montrer que l’intensité observée au point M est de la forme I(M) = 2I0(1 + cos(∆ϕ)), où I0 est l’intensité
lumineuse reçue en M de la part d’un des deux trous. On précisera l’expression de I0 en fonction de β et A.

4. Donner l’expression du déphasage ∆ϕ entre les deux ondes qui interfèrent en M en fonction de la différence de
marche δ(M) et de la longueur d’onde λ. Puis expliciter δ(M) en fonction de r1, r2 et HS1.

5. On donne les coordonnées M(x, y,D), S1(A/2, 0, 0) et S2(−a/2, 0, 0). On suppose de plus que D � x, y. Établir
les expressions simplifiées de r1 et r2 en fonction de x, y, D et a, à l’aide d’un développement limité. On rappelle
que (1 +X)α ≈ 1 + αX lorsque X � 1.

6. On notera désormais l’intensité I(M) = I1(M) puisqu’elle est causée par l’étoile E1. Montrer que finalement

I1(x) = 2I0

(
1 + cos

(
2πa

λ

( x

D
− ε

)))
(1)

7. Quelle est la position x0 du maximum de I1(x) correspondant à un déphasage nul entre les deux ondes ?
8. Établir les positions x+ et x− des deux annulations de I1(x) de part et d’autre de x0. En déduire l’expression

de l’interfrange i en fonction de a, λ et D.
9. Tracer l’allure de I1(x) sur trois interfranges.

On considère désormais les rayons issus des deux étoiles simultanément. Bien qu’elles soient synchrones, les lumières
issues des deux étoiles n’interfèrent pas entre elles car elles sont incohérentes, c’est-à-dire constituées chacune de trains
d’ondes mutuellement décorrélés 1. Par conséquent la figure d’interférence observée sur l’écran est formée par l’addition
des intensités I1(M) et I2(M) issues respectivement des étoiles E1 et E2. On supposera enfin que l’intensité reçue de
chaque étoile dans la lunette est la même.

10. En déduire l’expression de l’intensité I2(x) sur l’écran.
11. À l’aide d’une formule trigonométrique adaptée, exprimer l’intensité totale I(x) sous la forme d’une somme d’un

terme constant et d’un produit de deux fonctions sinusoïdales.
12. Déterminer la valeur maximale Imax et minimale Imin de l’intensité. En déduire l’expression du contraste

C = Imax −Imin
Imax +Imin

.

1. programme de deuxième année
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13. Montrer que le contraste s’annule pour certaines valeurs de a à expliciter (donc les franges d’interférences se
brouillent, l’écran devient uniformément éclairé). Interpréter ce résultat à l’aide de la question 9.

14. La plus petite distance a entre S1 et S2 pour laquelle les franges disparaissent vaut amin = 71mm. En déduire
la distance angulaire 2ε (en radians) entre les deux composantes de l’étoile double. Pourrait-on l’observer à l’œil
nu à travers la lunette ?

Exercice 4 : La cycloïde

La cycloïde est la courbe engendrée par un point d’un cercle qui roule sans glisser sur une droite. On peut expéri-
mentalement observer cette courbe en observant la trajectoire de la valve d’une roue de vélo.

I. Equations paramétriques cartésiennes du mouvement.

On note M un point donné d’un cercle C de centre A et
de rayon R roulant sans glissement sur une surface plane.
A l’instant initial (t = 0 s) on suppose que le point M est
confondu avec l’origine O d’un repère (Oxz). On note H(t)
le projeté orthogonal de A sur l’axe (Ox) qui dépend du
temps car la roue avance. La position de M à l’instant
t est repérée par l’angle orienté θ(t) = (

#    »

AH,
#     »

AM), le sens
positif étant le sens horaire. x

A(0)

OM(0)

z

A(t)

H(t)

M(t)

θ(t)

+

On souhaite déterminer les coordonnées cartésiennes (x, y, z) du point M en fonction du paramètre θ. Le mou-
vement du point M est étudié dans le référentiel R lié au repère (Oxz).

1. Démontrer que la distance algébrique OH est donnée par la relation OH = Rθ(t).
2. Exprimer les composantes du vecteur #     »

AM(t) dans la base cartésienne ( #»ux,
#»uz), dirigeant les axes Ox et

Oz, en fonction de R et de θ(t).
3. En décomposant judicieusement le vecteur #      »

OM , montrer que les équations horaires du mouvement s’écrivent
sous la forme {

x(t) = R[θ(t)− sin θ(t)]
z(t) = R[1− cos θ(t)]

II. Vecteur vitesse.
Afin de simplifier l’étude cinématique, on se limite dans toute la suite au cas où le centre A du cercle C a un
mouvement rectiligne uniforme de vitesse v0.

4. En utilisant la relation établie à la question 1, montrer que la vitesse angulaire de rotation θ̇ = dθ
dt est

constante. Donner son expression en fonction de R et de v0.
5. Montrer que le mouvement de M dans le référentiel (Axz), de centre A et d’axes Ax et Az parallèles à Ox

et Oz, est circulaire uniforme.
6. Exprimer les composantes du vecteur vitesse #»v (M/R) dans la base cartésienne ( #»ux,

#»uz) en fonction de R,
θ et θ̇.

7. Représenter sur un même schéma la position du cercle C et la trajectoire de M au cours du temps (la
fameuse cycloïde), en dessinant l’allure du vecteur vitesse #»v pour les valeurs suivantes du paramètre θ :
θ1 = π

2 , θ2 = π, θ3 = 3π
2 , et θ4 = 2π

8. Déterminer la norme v = ‖ #»v (M/R)‖ de la vitesse de M dans R en fonction de v0 et de θ.
9. Simplifier l’expression précédente de v grâce à une formule de trigonométrie. Représenter graphiquement

v(t), sur deux périodes T , en faisant apparaître v0 sur le graphique.
III. Vecteur accélération.

10. Exprimer dans la base cartésienne ( #»ux,
#»uy) les composantes du vecteur accélération #»a (M/R) du point M

dans R en fonction de v0, R et θ.
11. Sur le dessin de la question 7, représenter l’allure du vecteur accélération #»a (M/R) pour les valeurs θ1, θ2,

θ3 et θ4.
12. On dit que le point M est accéléré lorsque la norme de sa vitesse augmente. Dans quelles zones le point M

est-il accéléré ou décéléré ?
13. En quoi les vecteurs #»v et #»a pour θ4 = 2π présentent-ils un caractère surprenant ?
14. Montrer que la norme a = ‖ #»a (M/R)‖ du vecteur accélération de M dans R est constante. Calculer sa

valeur pour un pneu de voiture de rayon R = 35 cm et tel que v0 = 130 km h−1.
15. Montrer que #»a (M/R) est toujours dirigé de M vers A.
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