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De l’élec et de la chimie

I. Pickup de guitare électrique

I.1 Étude graphique du filtre

I.1.a Il s’agit d’un filtre passe bas . La pente de l’asymptote à grande fréquence (voir figure ci-après)

vaut −40 dB par décade : il est donc du deuxième ordre .

I.1.b On lit sur la figure précédente :

f ≪ 3 kHz : GdB = 0 et f ≫ 3 kHz : GdB = −40 log (f/f0) = −40 log (f) + 140

avec f0 la fréquence pour laquelle l’asymptote haute fréquence à GdB coupe l’asymptote à basse
fréquence. On lit f0 = 3 kHz .

I.2 Étude de la fonction de transfert

I.2.a • la première proposition est bien un filtre passe bas, mais du premier ordre
• la troisième diverge pour ω → ω0

• la quatrième constitue un passe bande

L’unique proposition est donc la deuxième : H =
H0

1 + j
ω

Qω0
−
(

ω

ω0

)2 .

I.2.b Tableau récapitulatif :

ω ≪ ω0 ω0 ≫ ω0

H(jω) H0 −j QH0 −
(ω0

ω

)2

H0

|H(jω)| H0 QH0

(ω0

ω

)2

H0

GdB(ω)
20 log (H0) :
asymptote
horizontale

20 log (Q)+20 log (H0)
−40 log (ω)+20 log (H0 ω

2
0) :

asymptote
de pente -40 dB/dec

ϕ (ω) (rad) 0 −π/2 −π
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I.2.c • L’asymptote à basse fréquence donne H0 = 100 = 1 .

• On lit ensuite 20 log (Q) = GdB (ω0) = 14, soit Q = 1014/20 = 5 .
• On vérifie sur les expressions précédentes que les deux asymptotes à haute et basse fréquence

se coupent en ω = ω0, soit en f = f0. On lit sur le courbe ci-avant f0 = 3, 0 kHz .

I.2.d Pour la pulsation ω = ω0, on a vu dans le tableau précédent :

ϕ (ω0) = −π

2
rad et GdB(f0) = 20 log (Q) + 20 log(H0)

I.3 • f1 = 300 Hz : le gain vaut GdB = 0, soit |H| = 1, 0. On aura donc Us1 = 1, 0 V .

• f2 = 3 kHz : le gain vaut GdB = 14, soit |H| = 5, 0. On aura donc Us2 = 5, 0 V .

• f3 = 8 kHz : le gain vaut GdB = −16, soit |H| = 10−16/20 = 0, 16. On aura donc Us3 = 0, 16 V .

I.4 Étude à partir du spectre

I.4.a On distingue des pics régulièrement espacés. Comme les fréquences des harmoniques sont les
multiples de la fréquence fondamentale, l’intervalle de fréquence donne la fréquence f0 du fon-
damental.
On compte 18 intervalles entre 0 kHz et 6 kHz, soit f fond = 3, 3.102 Hz .

• fondamental : 20 log (U/Uref) = 50 donc U = 3, 2 V

• 2ème harmonique : 20 log (U/Uref) = 48 donc U = 2, 5 V

• 3ème harmonique : 20 log (U/Uref) = 38 donc U = 0, 79 V

• 4ème harmonique : 20 log (U/Uref) = 20 donc U = 0, 10 V

I.4.b Notons GdBe la valeur lue sur la courbe, correspondant à 20 log (U/Uref). On a :

Us = |H|U = 10GdB/20 × 10GdBe/20 × Uref = 10(GdB+GdBe)/20 × Uref

L’amplitude en dB du signal dans le spectre est donc GdBe +GdB .
• fondamental : on est dans le domaine passant, où le gain vaut GdB = 0.

L’amplitude en dB du fondamental reste donc de 50 .
• harmonique le plus proche de f = 3 kHz : il s’agit du 9ème, avec f = 3, 0 kHz, d’ampli-

tude 2 dB. Le gain à cette fréquence est légèrement inférieur à sa valeur à résonance : on a
GdB = 14, et l’amplitude en dB devient 16 : cette portion du signal est très amplifiée.

• harmonique le plus proche de f = 8 kHz : il s’agit du 24ème, avec f = 8, 0 kHz, d’am-
plitude 2 dB. Le gain à cette fréquence est GdB = −16, l’amplitude en dB sera donc -14 .
Cette partie est fortement atténuée.

I.5 Étude d’un signal de sortie à partir d’un signal d’entrée

I.5.a Les signaux ont pour période T = 3, 0.10−3/7, 5 = 0, 40 ms et une fréquence f = 1/T = 2, 5 kHz.

On constate que le signal us est en quadrature retard par rapport à ue donc ϕ = −π/2 rad , ce

qui correspond à une excitation à la fréquence propre f0. On a donc f0 = 2, 5 kHz .

Par ailleurs, le rapport des amplitudes est Us/Ue = 2. Le gain est donc égal à 2 . Pour H0 = 1,

on a donc |H(f = f0) | = Q = 2 .
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I.5.b On calcule la fonction de transfert dans les deux cas :
• f = 0, 25 kHz : on a f/f0 = 0, 10. On est suffisamment dans la bande passante pour approxi-

mer H ≈ 1. L’entrée et la sortie sont indiscernables.
• f = 25 kHz : on a f/f0 = 10. On est suffisamment dans la bande coupée pour utiliser

l’approximation asymptotique H (jω) ≈ −ω2
0 H

2
0/ω

2 = −1, 0.10−2. La sortie est donc en
opposition de phase, avec une amplitude de 1,0% de celle de l’entrée.

I.6 Les modèles à haute et basse fréquences sont représentés sur les deux figures ci-dessous :

Modèle équivalent pour f ≪ f0 Modèle équivalent pour f ≫ f0

✻ ✻

• f ≪ f0 : un pont diviseur de tension assure que

us

e
=

Ra

Ra + R
On est dans le domaine passant.

• f ≫ f0 : la résistance Ra est court-circuitée par les condensateurs et on a us → 0 : on est dans
la bande coupée.

Il s’agit donc bien d’un filtre passe-bas.

NB : contrairement au filtre de la figure 1, le gain en dB en bande passante sera ici toujours négatif
puisque Ra/(Ra + R) < 1.

I.7 Pour avoir une résonance à 2,5kHz, la figure 6 indique qu’il faut Cc/C entre 5 et 8. Ceci n’est
rigoureusement valable que pour Ra = 10 MΩ mais la courbe de la figure 5 illustre que la fréquence
de résonance ne varie pas de manière significative quand R/Ra ≪ 1.
Une surtension de 5 à la résonance correspond à GdB, résonance = 20 log(5) = 14, 0, soit à R/Ra
légèrement inférieur à 2.10−3.
On peut finalement choisir :

Cc ≈ 6C = 600 pF et Ra ≈
R

2.10−3
= 3 MΩ

I.8 Étude de la modélisation du pickup

I.8.a • l’association parallèle des deux condensateurs est équivalente à un condensateur de capacité
Ctot = C + Cc,

• son association parallèle avec Ra est équivalent à un dipôle d’impédance :

Zéq =
Ra

1 + jRa Ctot ω

• un pont diviseur de tension donne enfin :

us

e
=

Zéq

j Lω + R+ Zéq
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us

e
=

Ra

Ra + R+ j Lω + jRRa Ctot ω − LRa Ctot ω2
=

Ra/(Ra + R)

1 + j

(

L + Ra RCtot

R + Ra

)

ω − Ra

R + Ra
LCtot ω2

de la forme demandée, avec

H0 =
Ra

Ra + R
ω0 =

√

R + Ra

LCtot Ra
Q =

√

(Ra + R) Ra LCtot

L + Ra RCtot

I.8.b Pour Ra ≫ R, on peut simplifier en :

H0 ≈ 1 ω0 ≈
1√

LCtot

Q ≈ Ra

√
LCtot

L + Ra RCtot

On observe que f0 décroît quand Cc/C croît, en accord avec la décroissance de ω0 ∝ 1/
√
C+ Cc

avec Cc à C fixée.

II. Le diiode en solution aqueuse

II.1 La famille des halogènes correspond à la 17ème colonne de la classification périodique.

II.2 Le premier halogène est le fluor, situé en période 2. L’iode étant le quatrième halogène, il est donc
en période 5, ce qui signifie que le nombre quantique principal le plus élevé de sa configuration
électronique est nmax = 5. De plus, étant dans la 17ème, 5ème colonne du bloc p, sa configuration
électronique se termine par p5 selon la règle de Klechkowski.

d’où 1s2 2s2 2p6 3s3 3p6 4s2 3d10 4p6 5s2 4d10 5p5

↑↓ ↑↓↑↓↑

Le nombre de protons dans le noyau est égal au nombre d’électrons. Ainsi, Z = 53 .

II.3 Les métaux, non-métaux et métalloïdes sont disposés comme suit dans la classification périodique
des éléments :

Étant situés dans la colonne n°17, les halogènes sont des non-métaux

II.4 De par leur position dans le tableau périodique, dans l’avant-dernière colonne, on sait que les atomes
d’halogènes sont relativement électronégatifs et tendent à compléter leur couche de valence avec un
électron. Pour ce faire, les atomes s’associent par liaison covalente sous forme de molécules de
formule X2, ce qui permet à chaque atome de vérifier la règle de l’octet :
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II.5 On réalise un tableau d’avancement en quantités de matière pour cette réaction :

I2(s) F2(g) IF5(ℓ)

t = 0 n1 =
m0

M(I2)
= 0, 0118 mol n0 = 0, 100 mol 0

t n1 −
1

2
ξ n0 −

5

2
ξ ξ

La constante d’équilibre étant très élevée (K0 = 10130 ≫ 1), on peut penser que la réaction sera
quantitative dans l’état final. Il faut alors déterminer la nature du réactif limitant, pour savoir
si cela devrait se traduire par une réaction rigoureusement totale, avec rupture d’équilibre (si le
réactif limitant est I2(s)), ou bien par une réaction quasi-totale, avec état final d’équilibre (si le
réactif limitant est F2(g)).
⋆ Si I2 était limitant, alors l’avancement maximal serait égal à 2n1 = 0, 0236 mol.
⋆ Si F2 étant limitant, alors l’avancement maximal serait égal à 2n0/5 = 0, 0400 mol > 0, 0236 mol.

Par conséquent, le réactif limitant est I2(s) et ξmax = 0, 0236 mol.
On fait donc l’hypothèse qu’il va se produire une rupture d’équilibre à la disparition du dernier
grain de diiode. On aura alors rigoureusement : ξf = ξmax = 0, 0236 mol et le système contiendra :

nf(F2) = 0, 0409 mol de difluor gazeux, soit une pression P(F2) =
nf(F2)RT

V
= 0, 101 bar et

nf(IF5) = 0, 0236 mol de IF5(ℓ).
Pour valider l’hypothèse, on calcule le quotient réactionnel dans cet état final :

Qf =

(

P0

P(F2)

)5/2

= 306 < K0

En conclusion, on trouve bien Qf < K0 dans l’état final, ce qui valide l’hypothèse : la disparition
du dernier graine de diiode se produit avant d’avoir pu atteindre l’équilibre chimique.

Dans l’état final, le système contient :
0,0236 mol de IF5(ℓ) et du difluor gazeux à la pression P(F2(g)) = 0, 102 bar.

Le diiode solide est rigoureusement absent.
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II.6 Le fluor et l’iode ayant chacun 7 électrons de valence, il faut dans la molécule de IF5 répartir
Ne = 6 × 7 = 42 électrons, par l’intermédiaire de D = 21 doublets. La structure de Lewis la plus
probable de IF5 est ainsi celle présentée ci-après à gauche :

II.7 Le fluor étant situé plus haut que l’iode dans la colonne des halogènes, son électronégativité est
supérieure. Chaque liaison F-I est donc polarisée avec une charge partielle négative sur F et positive
pour I, ce qu’on peut modéliser par autant de moments dipolaires de liaison −→

µ i.
Le moment dipolaire de la molécule IF5 est la somme des vecteurs moment dipolaire de chaque
liaison. Cette somme est sensiblement égale au moment dipolaire de la liaison I-F de l’axe de la py-
ramide, puisque les quatre moments dipolaires des liaisons de la base de la pyramide se compensent
pratiquement :

−→
µ =

−→
µ1 +

−→
µ2 +

−→
µ3 +

−→
µ4 +

−→
µ5 ≈ −→

µ1 : la molécule IF5 est polaire.

II.8 On divise la quantité de matière apportée de chaque soluté par le volume total dans le becher, qui
vaut Vtot = V1 +V2 +Vb = 31, 0 mL. On trouve alors :

[

S2O
2−
8

]

0
=

C2V2

V1 +V2 +Vb

= 0, 0161 mol.L−1 [I−]0 =
C1V1 + CiVb

V1 +V2 +Vb

= 0, 0333 mol.L−1

[

S2O
2−
3

]

0
=

CtVb

V1 +V2 +Vb
= 0, 00161 mol.L−1

II.9 La réaction ne mettant en jeu que des solutés, elle ne peut pas être rigoureusement totale. En re-
vanche, comme K0 ≫ 1, on peut faire l’hypothèse qu’elle sera quasi totale.
On fait un tableau d’avancement en concentrations (volume constant dans cette question), sachant
que S2O

2−
8 est limitant (car le premier à s’annuler, pour xmax = 0, 0161 mol.L−1) :

S2O
2−
8 I− SO2−

4 I2
t = 0 (mol.L−1) 0, 0161 0, 0333 0 0
t∞ (mol.L−1) ε ≈ 0 0, 0011 0, 0323 0, 0161

La concentration résiduelle en S2O
2−
8 se calcule en écrivant qu’à l’équilibre, K0 = Q∞, soit donc

K0 =

[

SO2−
4

]2

∞
[I2]∞

[

S2O
2−
8

]

∞
[I−]2

∞

=
0, 03232 × 0, 0161

ε× 0, 00112

On obtient alors ε = 1, 1.10−46 mol.L−1. Cette concentration est bien complètement négligeable
devant la concentration initiale en S2O

2−
8 , ce qui valide l’hypothèse d’une réaction quasi-totale.
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Au bout d’une durée « infini », le système contiendra les solutés aux concentrations suivantes :
[

S2O
2−
8

]

= 1, 1.10−46 mol.L−1 [I−] = 0, 0011 mol.L−1
[

SO2−
4

]

= 0, 0323 mol.L−1 [I2] = 0, 0161 mol.L−1.
La réaction (R) est très favorable thermodynamiquement. Elle est quantitative aux temps longs.

II.10 On a immédiatement v = k
[

S2O
2−
8

]α
[I−]

β

II.11 La concentration en I− reste constante pour deux raisons :
⋆ d’une part, tant qu’il y a des ions thiolsulfate, tous les ions consommés par la réaction (R) sont

régénérés par la réaction quasi instantanée I2 + 2S2O
2−
3 ⇋ 2I− + S4O

2−
6 ;

⋆ d’autre part, parce qu’il y a aussi des ions I− dans la burette à exactement la même concentration
Ci = 0, 0333 mol.L−1. Donc à chaque fois qu’on verse un volume à la burette, cela ne dilue pas
les ions I−.

On peut donc écrire que [I−] = [I−]0 à chaque instant.

Ainsi v = k [I−]
β
0

[

S2O
2−
8

]α
= kapp

[

S2O
2−
8

]α
avec kapp = k [I−]

β
0

II.12 La coloration bleue est due à la présence de diiode (l’empois d’amidon est un indicateur de la
présence du diiode). Ceci se produit brusquement lorsque les ions thiosulfate S2O

2−
8 sont épuisés ;

la réaction (R’) s’arrête donc brusquement de détruire le diiode que (R) crée.

Lorsqu’on rajoute un volume à la burette, on apporte des ions thiosulfate : la réaction (R’) peut donc
reprendre et détruire le diiode présent. La coloration bleue disparaît, jusqu’à ce qu’elle réapparaisse
quand le thiosulfate sera de nouveau épuisé.

II.13 Dans Vb = 1, 0 mL délivré à la burette, il y a CtVb = nt d’ions thiosulfate. D’après le bilan de la

réaction (R’), lorsque la coloration apparaît, c’est que la réaction (R’) a détruit la quantité
nt

2
de

diiode, qui avait été produit par la réaction (R). Entre 2 apparitions de coloration bleue, la réaction

(R) avance donc de ξ =
nt

2
=

CtVb

2
= 2, 5.10−5 mol.

On en déduit que la quantité de S2O
2−
8 diminue d’autant. On divise par le volume dans le bécher,

qui vaut V1 +V2 + (1 + i)Vb, pour avoir le tableau de concentrations demandé.

II.14 Comme on l’a établi à la question 11. , la vitesse s’exprime dans les conditions de cette expérience
par v = kapp

[

S2O
2−
8

]α
. Si on fait l’hypothèse que α = 1, alors la loi devient :

v = kapp

[

S2O
2−
8

]

Comme par ailleurs, v = −d
[

S2O
2−
8

]

dt
, on en déduit par intégration que :

ln

(

[

S2O
2−
8

]

(t)
[

S2O
2−
8

]

0

)

= −kappt

Pour vérifier l’hypothèse d’un ordre α = 1, on doit donc reporter les points expérimentaux dans

un graphe donnant ln

(

[

S2O
2−
8

]

(t)
[

S2O
2−
8

]

0

)

en fonction du temps. Si l’alignement des points est jugé

satisfaisant, avec une ordonnée à l’origine de la droite modèle proche de zéro, alors l’ordre 1 sera
validé.
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On obtient le graphe suivant :

La régression linéaire y = ax + b donne a = −2, 4.10−4 s−1 et b = −1, 1.10−2. Les points semblent
être alignés et l’ordonnée à l’origine est telle que b ≈ 0.

L’ordre α = 1 est ainsi validé.

On peut donc se servir de la valeur de la pente de la droite de régression linéaire, qui est telle que
k = −a.

d’où kapp = 2, 44.10−4 s−1

II.15 Comme indiqué à la question 12., la constante cinétique que l’on détermine par ce protocole est une
constante cinétique apparente. Elle inclut en effet la concentration en ions iodure :

kapp = k [I−]
β
0

Si on recommence l’expérience en modifiant uniquement la concentration en ions iodure, telle que
[I−]

′

0 = 2 [I−]0, alors on trouve une constante cinétique apparente différente telle que

k′

app = k [I−]
′

0
β

En divisant ces deux relations, on obtient :

k′

app

kapp

= 2β

Ainsi β =

ln

(

k′

app

kapp

)

ln(2)
= 1, 03

La valeur recherchée pour β est entière. Ainsi, on en déduit que

β = 1

En prenant en compte cette valeur de β, on peut alors déterminer la constante k de la réaction :

k =
kapp

[I−]0
= 7, 2.10−3 L.mol−1.s−1

�


