DE L'OPTIQUE, DE LA CHIMIE ET DE L'ÉLEC

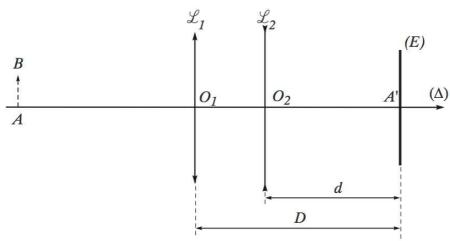
Jeudi 9 octobre 2025 - Durée 2h00

- * La calculatrice est autorisée.
- * Le téléphone portable est interdit.
- * Il sera tenu le plus grand compte du soin, de la présentation, et de la rédaction.
- * Chaque réponse doit être justifiée.
- * Par ailleurs, même lorsque ce n'est pas explicitement demandé, toute application numérique doit être précédée d'une expression littérale en fonction des données de l'énoncé.

Pour l'optique géométrique

Les systèmes optiques sont étudiés dans l'air, d'indice n=1.

Soit A un point objet sur l'axe optique et A' son image par la lentille mince \mathcal{L} , de centre O et de foyers objet et image F et F'. Le diagramme objet-image correspondant est le suivant :


$$A \xrightarrow{\mathscr{L}} A'$$

	Descartes	Newton
Formules de conjugaison	$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$	$\overline{F'A'} \times \overline{FA} = -(f')^2$
Formules de grandissement	$\gamma = \frac{\overline{OA'}}{\overline{OA}}$	$\gamma = \frac{\overline{F'A'}}{-f'} = \frac{f'}{\overline{FA}}$

I. Latitude de mise au point

Sur le schéma (à considérer après les questions préliminaires), la distance D est fixe; le réglage du système est réalisé en jouant sur la distance d. On se place dans les conditions de Gauss. Les distances focales image sont $f'_1 = 4,0$ cm et $f'_2 = -6,0$ cm. Les diagrammes objet-image à considérer sont

$$AB \xrightarrow{\mathcal{L}_1} A_1B_1 \xrightarrow{\mathcal{L}_2} A'B'$$

Questions préliminaires

- 1. Que suppose le fait de se placer dans les conditions de Gauss? Que peut-on alors considérer?
- 2. On considère une lentille divergente \mathcal{L}_2 , de centre \mathcal{O}_2 , de foyer objet \mathcal{F}_2 , de foyer image \mathcal{F}_2' et de distance focale image f_2' . Soit un objet $\mathcal{A}_1\mathcal{B}_1$ situé entre \mathcal{O}_2 et \mathcal{F}_2 .
 - a) Quelle est la nature de l'objet pour \mathcal{L}_2 ?
 - b) Construire l'image A'B' par \mathcal{L}_2 de l'objet A_1B_1 .
 - c) L'image est-elle réelle ou virtuelle? On notera que cette position particulière de l'objet A_1B_1 est la seule permettant d'obtenir une telle image.
 - d) L'image se trouve-t-elle avant ou après l'objet?
- 3. Il s'agit ici de montrer que le résultat obtenu à la question 2. d) est toujours vrai, quelle que soit la position de A_1B_1 entre O_2 et F_2 . En utilisant une des relations de conjugaison, montrer qu'avec A_1 situé entre O_2 et F_2 , alors on a forcément $\overline{A_1A'} > 0$.

Mise au point à l'infini

- 4. Dans le cas de la mise au point à l'infini, où l'image A_1 de A par \mathcal{L}_1 se trouve-t-elle?
- 5. Le système est réglé de façon à donner, des objets à l'infini, une image nette sur l'écran. Quel est nécessairement le signe de $D-f_1'$ pour que ceci soit possible?
- 6. Lorsque cette condition est réalisée, on a alors $d=d_{\infty}$ pour ce réglage. Montrer que d_{∞} vérifie l'équation du second degré : $d_{\infty}^{2} + (f'_{1} D) d_{\infty} f'_{2} (f'_{1} D) = 0$

Déterminer alors l'expression de d_{∞} .

7. Si D = 5,0 cm, que vaut d_{∞} ?

Faire un schéma à l'échelle 1 du système. Construire l'image A'B' d'un objet AB à l'infini vu sous l'angle α , pour D = 5,0 cm. Il faudra bien entendu y faire figurer également l'image intermédiaire A_1B_1 . Que peut-on dire concernant les points O_2 , B_1 et B'? Quelle est la nature du triangle $O_2A'B'$?

8. Établir que la taille de l'image vérifie la relation $\overline{A'B'} = -\alpha \frac{d_{\infty} f_1'}{f_1' + d_{\infty} - D}$.

Modification du système

- 9. Lorsque l'on veut mettre au point sur un objet à distance finie, dans quel sens faut-il déplacer la lentille divergente? Quelle inégalité a-t-on alors entre d et d_{∞} ?
- 10. On souhaite réaliser un système tel que d_{∞} corresponde à la valeur D. Quelle est la longueur $D = d_{\infty}$ à donner au système dans ce cas (on rappelle que lorsque deux lentilles sont accolées, elles sont équivalentes à une lentille unique de vergence la somme des vergences des deux lentilles)?

Latitude de mise au point

- 11. On positionne \mathcal{L}_1 et (E) de telle sorte que D = 12 cm. Indiquer dans ce cas la profondeur de mise au point du système, c'est-à-dire le domaine des positions de l'objet AB susceptibles de donner une image nette sur l'écran lorsqu'on donne à d une valeur adaptée.
- 12. Avec D = 12 cm et $d = \overline{O_2A'} = +6,0$ cm, faire une construction à l'échelle <u>1 permettant de</u> déterminer la position de A à partir de A'. Par le calcul, retrouver les valeurs de $\overline{O_2A_1}$ et de $\overline{O_1A}$.

II. Grillage de la galène

La galène est le principal minerai de plomb. Elle est constituée essentiellement de sulfure de plomb, espèce chimique de formule PbS et de masse molaire $M = 239, 3 \text{ g.mol}^{-1}$.

Lors du traitement du minerai dans le but d'obtenir du plomb, on procède tout d'abord à une opération appelée grillage, dont l'équation de réaction est donnée ci-dessous :

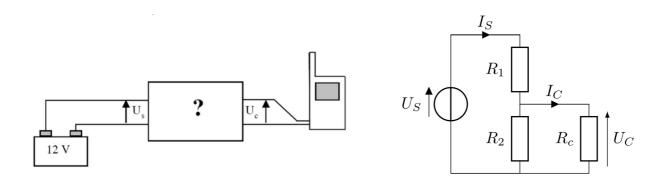
$$2 \operatorname{PbS}_{(s)} + \alpha \operatorname{O}_{2(g)} \implies \beta \operatorname{PbO}_{(s)} + \gamma \operatorname{SO}_{2(g)}$$

Cette opération est réalisée à 700° C, température à laquelle la constante d'équilibre de la réaction a pour valeur $K^0 = 3, 0.10^{46}$.

1. Rappeler les règles de conservation que doivent respecter les nombres stœchiométriques dans l'équation symbolisant une réaction chimique, et donner les valeurs de α , β et γ .

Dans une enceinte de volume initial $V_0 = 1,00 \text{ m}^3$, on introduit une masse $m_0 = 100 \text{ g}$ de galène PbS, ainsi que de l'air sous pression standard p^0 et à température de T = 700 °C.

Grâce à une paroi coulissante, la pression est maintenue constante dans l'enceinte pendant toute la transformation. Grâce à un thermostat, la température est maintenue constante.


- 2. Déterminer les quantités de matière apportées de galène, de dioxygène et de diazote dans le système initial : $n_{\text{PbS},0}$ et $n_{\text{O}_2,0}$ et $n_{\text{N}_2,0}$.
- 3. Montrer que le système précédent n'est pas initialement à l'équilibre chimique et déterminer son sens d'évolution.
- 4. Déterminer l'état final du système : nombre de phases en présence, quantité de matière de solide(s), pressions partielles dans la phase gazeuse.
- 5. Quelle masse maximale de galène m'_0 peut-on espérer convertir en oxyde de plomb dans ces conditions? En excès de galène, quelle sera la pression partielle résiduelle en dioxygène gazeux?

Données:

- * La pression standard est $p^0 = 1$ bar.
- * Les gaz sont considérés comme parfaits.
- * La constante des gaz parfaits vaut : $R = 8,314 \text{ J.mol}^{-1}.\text{K}^{-1}.$
- * L'air pourra être modélisé comme un mélange de dioxygène et de diazote, de fractions molaires respectives $x_{O_2} = 0, 20$ et $x_{N_2} = 0, 80$.

III. Recharge d'un smartphone à l'aide d'une batterie de voiture

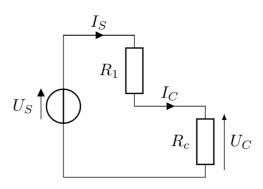
On souhaite réaliser un adaptateur pour recharger un téléphone portable à partir de la batterie d'une voiture. La batterie (source de tension) délivre une tension continue $U_S=12~V$ (schéma de gauche). On considère pour simplifier les calculs un téléphone devant être alimenté par une tension continue $U_C=6,0~V$. On cherche donc à avoir $U_C/U_S=1/2$.

III.1 Premier montage

Le procédé le plus immédiat pour abaisser une tension continue est sans doute un montage diviseur de tension, où R_C représente la résistance de charge, ici la résistance d'entrée du téléphone portable.

- 1. Afin d'obtenir la transformation de tension souhaitée, quelle doit être la relation, notée (α) , liant R_1, R_2 et R_C ? Que devient cette relation dans le cas où $R_C \gg R_2$?
- 2. En supposant que la relation (α) est vérifiée, exprimer la puissance fournie par la batterie, notée P_S , en fonction de U_S et R_1 , ainsi que celle reçue par le téléphone, notée P_C , en fonction de U_S et R_C .

En déduire l'expression du rendement $\eta = P_C/P_S$ en fonction de R_1 et R_C .


Le téléphone portable présente une impédance d'entrée équivalente à une résistance $R_C = 10 \Omega$.

- 3. Applications numériques :
 - a) Si on choisit pour R_1 et R_2 deux résistances de 1,0 Ω , montrer que l'on obtient la fonction souhaitée (à 5% près).
 - b) Calculer le rendement η correspondant. Pourquoi est-il si faible?

III.2 Second montage

Pour éviter au maximum les pertes par effet Joule dans R_2 et ainsi augmenter le rendement, on propose d'utiliser le montage représenté ci-contre, avec $R_1 = R_C = 10 \Omega$.

- 4. Déterminer la valeur du rapport U_C/U_S.
- 5. Calculer le nouveau rendement $\eta = P_C/P_S$.

